If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2=2d+120
We move all terms to the left:
d^2-(2d+120)=0
We get rid of parentheses
d^2-2d-120=0
a = 1; b = -2; c = -120;
Δ = b2-4ac
Δ = -22-4·1·(-120)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*1}=\frac{-20}{2} =-10 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*1}=\frac{24}{2} =12 $
| 7x-12=5x+14 | | 3(x-1)-2(x+3=0 | | x-11=2x-22 | | x+(x-x(.4))=32.4 | | 2x^2-13x=14x-36 | | -3x^2+52x-169=0 | | 3/5=n-2/10 | | 2.5+22=4x+10 | | (2-z)(3z-5)=0 | | -72x^2+104x-20=0 | | -3x+52=4x-4 | | 5s=6 | | 8(x+1)=3x+48 | | -3x+52+4x-4=180 | | 9x+23=6x+17 | | (9+u)(2u-3)=0 | | 4x+6.25=15x+80 | | (x+1)^2=4 | | 4x-6.25=15x+80 | | n/40-20=-1 | | x÷3=15 | | 2x+13=13+x | | 9y-(5y-8)=-10-2y | | 2x+(x/2)=161 | | 6x+5+4x+11=48+9x-6x+3 | | 3j-3=18 | | 4x^-15x+13=7x-10 | | 14=2+4v | | 8a-7a=19 | | 1y-y=8 | | -3x^2+40x-100=0 | | F(416)=2x^2-6 |